

b-tu

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

BTU-BAM Graduate School "Trustworthy Hydrogen"

Prof. Dr. Jan Ingo Flege¹ and Dr. Kai Holtappels²

¹Brandenburg University of Technology Cottbus-Senftenberg ²Bundesanstalt für Materialforschung und –prüfung, Berlin

Contact information: flege@b-tu.de & kai.holtappels@bam.de

https://www.b-tu.de/graduiertenkolleg-trustworthy-hydrogen/

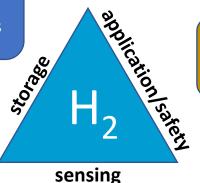
Brandenburg University of Technology Cottbus - Senftenberg

BTU-BAM Graduate School "Trustworthy Hydrogen"

- first graduate school in Germany focused on hydrogen trustworthiness
- combines the unique competences of BAM and BTU to train the next generation of interdisciplinary hydrogen scientists
- hydrogen focused qualification programme providing all PhD students with a holistic understanding of the hydrogen value chain
- starting date: January 2023

BTU-BAM Graduate School "Trustworthy Hydrogen"

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg


- first graduate school in Germany focused on hydrogen trustworthiness
- combines the unique competences of BAM and BTU to train the next generation of interdisciplinary hydrogen scientists
- hydrogen focused qualification programme providing all PhD students with a holistic understanding of the hydrogen value chain and the regulatory framework conditions
- wide range of soft skill courses
- close interaction with industry (embedded in international networks of BTU and BAM)
- working language is English

BTU-BAM Graduate School "Trustworthy Hydrogen"

Influence of manufacturing process-related residual stresses in wound composite material on the operational safety of H₂ pressure vessels

Efficient polymer matrix composites qualification strategies for next generation H₂-pressure vessels

S BAM

b-tu

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

Influence of manufacturing-induced imperfections on the operational safety of composite H₂ pressure vessels

> Evaluation of the influence of lubricants on pre-ignition of hydrogen for engine-relevant conditions

> > Influence of fires on tanks for cryogenic fluids

Digital sensor twins for hydrogen applications

Novel materials and coatings for the detection of hydrogen and hydrocarbons

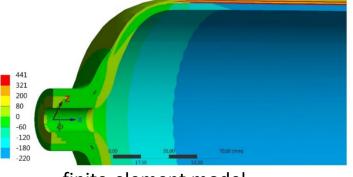
PhD Research Topic 1: Hydrogen Storage

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- Overall Goal: Optimizing the material of light-weight pressure vessels → polymer matrix composites made from carbon-fibre reinforced plastics
- <u>Present situation</u>: in-service life strongly influenced by inter-fibre failure due to long-term and cyclic thermomechanical loading
- Problem: current planar test geometries and protocols not efficient
- Novel ansatz: tubular test geometry with in-situ investigation
- <u>Deliverables</u>:
 - Design, manufacturing and test of representative tubular specimens
 - Built-up of in-situ H₂-pressurized tubes in tensile testing
 - Multiaxial test protocols for standardization

Prof. Seidlitz (BTU)/Prof. Trappe (BAM)

PhD Research Topic 5: Hydrogen Storage



Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- Overall goal: Optimizing the material of light-weight pressure vessels → polymer matrix composites made from carbon-fibre reinforced plastics
- Present situation: creation of composite using winding technology, AFP process, or braiding
- Problem: reduced stresses in winding process lead to reduced strength and reliability
- Novel ansatz: study influence of stress by simulation and hydraulic testing of model tanks
- <u>Deliverables</u>:
 - ➡ finite-element model of pressure vessel
 - ➡ determination of vessel design and manufacturing process
 - ➡ implementation and application of test setup

Prof. Seidlitz (BTU)/Drs. Mair & Günzel (BAM)

finite-element model

PhD Research Topic 6: Hydrogen Storage



Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- Overall goal: Optimizing the material of light-weight pressure vessels → polymer matrix composites made from carbon-fibre reinforced plastics
- <u>Present situation</u>: creation of composite using winding technology, AFP process, or braiding
- <u>Problem</u>: imperfections introduced in winding process lead to reduced reliability
- Novel ansatz: study influence of manufacturing-induced imperfections by simulation and testing
- Deliverables:
 - development and manufacturing of composite test specimen with targeted imperfections
 - ➡ FE model including manufacturing process derived imperfections
 - → implementation of suitable test setup
 - ➡ design rules and new material concepts

Prof. Seidlitz (BTU)/Prof. Trappe (BAM)

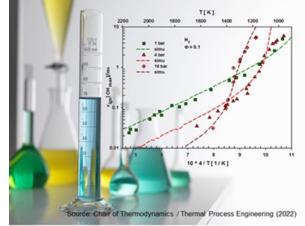
automatic fiber placement (AFP) process

PhD Research Topic 7: Hydrogen Safety/Applications

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- <u>Overall goal</u>: safe transportation of cryogenic fluids (liquefied H₂)
- Present situation: most commercial products optimized for liquefied natural gas
- Problem: little knowledge about other gases, especially, hydrogen
- Novel ansatz: study influence of fires on tanks experimentally and theoretically
- Deliverables:
 - → impact of fires on super insulation
 - how fires affect cryogenic hazardous materials
 - theoretical models describing such incidents

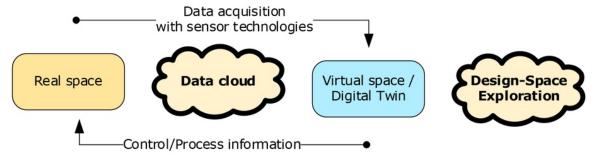
explosion of tank for liquefied gas


PhD Research Topic 3: Hydrogen Safety/Applications

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- Overall goal: safe and efficient operation of gas engines with green hydrogen
- Present situation: lubricants not optimized for hydrogen as fuel
- <u>Problem</u>: increased compression ratio and charging of intake air may cause self-ignition of engine oil
- <u>Novel ansatz</u>: theoretical and experimental study of influence of lubricants under engine-relevant conditions
- Deliverables:
 - fundamental understanding of influence of lubricant properties
 - validated detailed kinetic model for predicting preignition in hydrogen/air mixtures with lubricants
- → identification of optimum lubricant properties Prof. Mauß & Berg (BTU)/Drs. Askar & Gradt (BAM)

kinetic modeling of fundamental processes

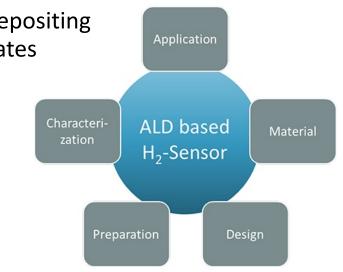

PhD Research Topic 4: Hydrogen Sensors

Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- <u>Overall goal</u>: optimized and validated process management in hydrogen plants using sensor technologies
- <u>Novel ansatz</u>: intelligent design of sensor networks based on digitally supported data mining
- <u>Deliverables</u>:
 - ➡ development of sensor network concept
 - ➡ establish sensor node system
 - → digital twin for H₂ determination in air

Prof. Reichenbach (BTU)/Drs. Maiwald & Tiebe (BAM)

PhD Research Topic 2: Novel Hydrogen Sensor Materials



Bundesanstalt für Materialforschung und -prüfung Brandenburg University of Technology Cottbus - Senftenberg

- <u>Overall goal</u>: miniaturized, efficient sensor materials for sensitive and selective H₂ detection
- <u>Present situation</u>: current sensors rather bulky, not CMOS-integrated
- <u>Novel ansatz</u>: use of atomic layer deposition (ALD) for depositing thin oxide films on nanostructured substrates
- **Deliverables**:
 - ➡ ALD preparation recipes for active sensor layers
 - ➡ characterization of gas-oxide interaction depending on temperature, pressure, gas composition
 - detailed sensor response depending on gas composition and exposure

Prof. Flege & Mauß (BTU)/Drs. Sobol & Tiebe (BAM)

